Q:

Triangle J is shown below. James drew a scaled version of Triangle J using a scale factor of 4 and labeled itTriangle KTriangle JWhat is the area of Triangle K?

Accepted Solution

A:
Answer:The area of triangle K is 16 times greater than the area of triangle JStep-by-step explanation:we know thatIf Triangle K is a scaled version of Triangle Jthen Triangle K and Triangle J are similarIf two triangles are similar, then the ratio of its areas is equal to the scale factor squaredLetz -----> the scale factorAk ------> the area of triangle KAj -----> the area of triangle Jso[tex]z^{2}=\frac{Ak}{Aj}[/tex]we have[tex]z=4[/tex]substitute[tex]4^{2}=\frac{Ak}{Aj}[/tex][tex]16=\frac{Ak}{Aj}[/tex][tex]Ak=16Aj[/tex]thereforeThe area of triangle K is 16 times greater than the area of triangle J